気体分子運動論ってなに?わかりやすく解説

この記事では「気体分子運動論」について、式の成り立ちからわかりやすく解説をしていきます。

気体分子運動論は、熱力学の中でも特に学んで面白い単元です。本記事の筆者は、気体分子運動論を学んだことがきっかけになって物理が得意になりました。熱力学と力学の知識の中間である気体分子運動論を学ぶと、熱力学についての理解がグッと深まると思います。

  • これから物理を学ぶ高校生
  • 物理を得点源にしたい受験生

に向けて、できるだけ噛み砕いて解説しますので、最後までしっかり読んで理解しましょう!

気体分子運動論とは?

通常の温度・圧力の状態では、気体の性質は状態方程式によく従います。そしてこれは酸素や水素、ヘリウムなど、気体の種類に関係なくどれも同じような振る舞いをすることがわかっています。

分子の大きさや質量は物質によって変わるにも関わらず、物質が気体になると全体の振る舞いに差がなくなります。なぜでしょうか?

そんな疑問を解消するために、昔の偉い学者が気体の分子1つ1つの運動を力学的な視点で考えて、分子の運動によって気体の圧力や温度を考えようと試みました。この考え方を気体分子運動論といいます。

気体分子運動論を導いてみよう

では、実際に気体分子運動論とはどんなものか?その流れを計算してみましょう。

前提条件

まず、気体分子運動論を考えるに当たって、前提条件を2つ決めておきます。

条件1:気体の大きさと形は無視する
条件2:気体分子どうし、また気体分子と容器の壁の衝突は弾性衝突になる

身の回りの空気を袋詰めすると、パンパンに膨らみます。これを見ると空気には酸素・窒素のような気体分子がぎっしりと詰まっているイメージをするかもしれませんが、実際にはそこまで気体分子の密度は大きくありません。

例えば空気中の酸素分子をサッカーボール大に拡大してみても、ワンルームの1部屋に1個あるくらいの密度しか入っていないのです。

このように気体分子が空間に占める大きさと形の割合はものすごく小さいです。部屋にあるボールがサッカーボールでもバスケットボールでも大した差がないのと同じで、気体分子の大きさと形もほとんど無視することができます。

また簡単のため、気体分子の衝突は全て弾性衝突、つまり同じ速さで跳ね返るものとして考えます。

気体の圧力を分子運動から計算してみる

ではいよいよ気体分子運動論の本題に入ります。気体の圧力を気体の分子運動から計算してみましょう。

一辺の長さL、体積V(=L^3)の立方体の箱の中に、質量mの分子がN個集まってできた気体を封じておきます。この時、気体が箱の壁に衝突することで壁が受ける圧力を求めてみましょう。

以下の画像のように、速度vの分子が壁に衝突すると、衝突後は衝突前と反対向きに運動をします。

衝突前後の気体分子の運動量はそれぞれmv-mvになるので、分子が受ける力積は

分子が受ける力積=(-mv)-(-mv)=-2mv

となります。作用反作用の法則を考えると、壁も同じ大きさで向きが反対の2mvの力積を受けることになります。

この時、向かい合う壁を往復した距離が2Lになるので、1つの分子が1秒間に\frac{v}{2L}回、同じ壁に衝突し、\delta{t}秒なら\frac{v\delta{t}}{2L}回衝突します。

よって1つの分子が壁に与える力積の総量F\delta{t}は、2mvに衝突の回数をかけたものになるので

F\delta{t}=2mv\times\frac{v\delta{t}}{2L}

となり、この式を変形すると

F=\frac{mv^2}{L}・・・①

が成り立ちます。これは1つの分子が壁に及ぼす力の平均です。

分子はN個あるので、xyzの3方向に3分の1ずつ運動して、それぞれの壁に均等に衝突するものとして考えることができます。

よって①式を\frac{N}{3}倍し、壁の面積L^2で割って圧力pを求めると

p=\frac{Nmv^2}{3L^3}=\frac{Nmv^2}{3V}・・・②

②式が成り立ちます。

気体分子運動論からわかること

②式からは、気体の圧力について以下の3点がわかります。

(1)気体分子の数Nに比例する
(2)分子の運動エネルギー\frac{1}{2}mv^2に比例する
(3)体積Vに反比例する

(1)についてはイメージしやすいと思います。タイヤに空気を多く詰め込むとタイヤ内の気体分子の数が増え、圧力が増えるということです。

(3)についても、気体を封じる容器の体積が大きいほど気体の密度が小さくなるため、圧力が小さくなります。というかボイルの法則そのままです。

(2)の「分子の運動エネルギー\frac{1}{2}mv^2に比例する」についてはイメージしにくいので、もうすこし一般化しましょう。

②式を気体の状態方程式に代入して、\frac{1}{2}mv^2について揃えてみましょう。この時アボガドロ定数N_0とするとN=nN_0になることに注意します。

すると

\frac{1}{2}mv^2=\frac{3R}{2N_0}T=\frac{3}{2}kT・・・③

③式が成り立ちます。この時k=\frac{R}{N_0}をボルツマン定数と呼びます。

③式からわかるのは、気体分子の運動エネルギーは気体の絶対温度に比例する、ということです。つまり気体の温度が上がるほど、気体の圧力は上がるということです。

つまり、気体分子運動論から気体の圧力について以下の3つがわかる、ということです。

気体分子運動論からわかること
(1)気体分子の数Nに比例する
(2)気体の絶対温度Tに比例する
(3)体積Vに反比例する

物理の偏差値を上げるなら
【オリジナル教科書「力学の考え方」配布!】

物理がニガテな受験生は迷わずダウンロード!偏差値爆上げ!

まとめ

気体分子運動論について、その成り立ちや背景について理解できましたか?

ただ関係式を覚えるだけではなく、なぜその式が成り立つのか?その背景まできちんと理解して公式を使いこなしましょう!


公式LINEで随時質問も受け付けていますので、わからないことはいつでも聞いてくださいね!
公式LINEで質問する


熱力学についてさらに詳しく勉強したい方は、こちらのまとめ記事をぜひ参考に↓↓↓

【熱力学についてもっと詳しく学ぶ】
熱力学の要点まとめ【物理の偏差値を上げる方法】

物理の偏差値を伸ばしたい受験生必見

偏差値60以下の人。勉強法を見直すべきです。

僕は高校入学時は国公立大学すら目指せない実力でしたが、最終的に物理の偏差値を80近くまで伸ばし、京大模試で7位を取り、京都大学に合格しました。

しかし、これは順調に伸びたのではなく、あるコツを掴むことが出来たからです。

その一番のきっかけになったのを『力学の考え方』にまとめました。

力学の基本中の基本です。

色々な問題に応用が効きますし、今でも僕はこの考え方に沿って問題を解いています。

最強のセオリーです。

LINEで無料プレゼントしてます。

>>>詳しくはこちらをクリック<<<

もしくは、下記画像をクリック!

>>>力学の考え方を受け取る<<<


コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です